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In the strongly nonlinear regime many pattern-forming systems, such as premixed flames, film flows, and
three-dimensional hydrodynamical flows, exhibit a remarkable nonlinear phenomenon: the resulting patterns
are substantially longer than the wavelength of the linearly most unstable mode. Usually such an inverse
cascade, or coarsening is attributed to high-order nonlinear effects. We show, however, that the coarsening may
be well described by a proposed weakly nonlinear evolution equation. The key of the model is the dispersion
relation, which, being the kernel of Fourier convolution operator, captures the essential properties of strong
instabilities in nonlinear systems.

PACS numbe(s): 47.54+r, 47.27.Te, 47.20.Dr, 47.20.Ky

One of the most basic and interesting problems of pattern Traditionally, the phenomenon of coarsening is attributed
selection theory is to predict the length-scale of experimento the impact of higher-order nonlinear effects. In conven-
tally observed structures. Typically, the stability propertiestional techniques of multiscale, or long-wavelength
of the underlying physical system depend on a control paasymptotic expansions, the higher-order terms become im-
rameterR; e.g., it might be the Reynolds or Rayleigh numberportant for instabilities far from the onset. However, the ac-
in hydrodynamics. Let us say that B&R; the system be- count of the higher-order nonlinearities usually allows one to
comes unstable. When the system is only slightly unstableaxtend the applicability of the conventional evolution equa-

0<R—R;<1, the length-scale of the formed patterns istong only forR slightly exceedingR., and in most of cases
close to the length of the most unstatifelinear description  js not applicable for the strong instabilities.

mode. Such pattern dynamics is well described by one of the We propose an alternative explanation of the coarsening

suitable well-known model equationd,2]; for instance, ; . e
. ) Lo in nonlinear systems. The idea of proposed description con-
Kuramoto-Sivashinsky(KS), Kawahara, and dissipation- sists of the following.

modified KdV equations describe patterns induced by the We want to extract common simole properties shared b
long-wavelength instabilites. In the case of short- p'e prop y

wavelength instabilities, the Ginzburg-Landau equation ofteﬁ’arious physical systems with coarsening for strong instabili-
appears. ' ties, with the hope that these properties will be responsible

When the instability becomes strong—R,=O(1) or for the co_arsening. With n_ecessity, such approach shou_ld be
R—R.>1, the physical systems often exhibit a substantiad oG since the conventional long-wavelength expansions
stretching of the patterns compared with the length of thé_jo not wo_rk well for strong instabilities. Fortunately, c_arefgl
most unstable mode. In some contexts, such stretching jgvestigation of a few nonlinear systems shows the direction
known as coarsening, or inverse energy cascade. The wefff the search. , y ,
known examples of the coarsening are tHeappearance of We _start from the linear stability problem, where the vari-
large cusplike waves in combusti¢8], (i) alpha-effect in ableu is represented as
three-dimensional hydrodynamif4], and (iii) formation of '
long solitary waves in thin liquid film§5,6]. u~elkxrot 1)
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FIG. 1. Plot of Eq.(7) for a=0.128p=0.85¢=0.022 (solid FIG. 2. Comparison of typical dispersion relatit) for the KS
line); exact dispersion relation for the downflowing film for condi- equation(dashed lingwith Eq. (7) for e=0.15 (solid line).
tions of[5] (dashed ling

should reasonably approximate the dispersion relations in the

with real wave numbek and complex frequencw. This  known equations with coarsening.
form provides the first insight into the underlying dynamics.  We will use equations for dynamics of premixed flames,
Dispersion relationw(k) governs the dynamics of linear and thin film to illustrate the choice ab(k). The implicit
waves|[7], formula definingw(k) for the premixed flames is given in
[8] [expression(17) on p. 1184. We need only the under-
standing of its asymptotic behavior.

When the Lewis number is equal to unity and thermal
expansion of combustion products is strong, the main term of
the expressiom(k) reads[8]

uﬁj —w e y(y,t)dy dk=0. 2)

For weak instabilitiesw(k) may be typically well approxi-
mated by the power series k Technically, this may be
done by multiscale asymptotic expansidi®3, or by long-
wavelength expansior®]. Replacingw by its approxima-
tion in terms of power series d&f allows one to reduce the
Fourier integral in Eq(2) to a comfortable differential op-
erator.

It is a very common and distinguishable property of the
linear stability problem, that the dispersion relatio(k) for
strong instabilities dramatically differs from that for weak
instabilities. The manifestation of the difference is that radiu
of convergence of power series expansionugk) is typi-
cally small for instabilities far from the onset. As a result,
w(Kk) for strong instabilitiecannotbe well approximated by
appropriate expansions in power serieskof trol parametes changes. I . -

Therefore, the description of the linear stage of the rel- I IS rgmarkable thaF the thin film flows provide very simi-
evant dynamics for strong instabilities should include the fuIIIar criteria for the choice 0@ (k). S
Fourier integral(2), which is the basic classical idea for the When the .R.eynolds numbérof the liquid f.'lm IS §I|ghtly
description of nonlinear processed. gbove the critical Reynolds numbBy,, the dispersion rela-

As for nonlinearit take the simolest ki tic term tion has the following forn{12,13:

y, we take the simplest kinematic term
uu,. This term appears in Burgers, KdV, KS, Kawahara
equations, the description of weak turbuleft@], and other
models[7]. In combustion[3,8] and thin films[2,11], this
nonlinearity is sufficient to reproduce the main features o
the pertinent dynamics.

Combining Eq.(2) with kinematic nonlinearityuu, , we
propose the following model equation:

w(k)=|k|—Kk>. (4)

Dispersion relation(4) leads to the integral Sivashinsky
equation with the full coarsening].

From the other side, below the critical Lewis number, the
leading term ofw(k) for small thermal expansion [8]

w(k)=k>—k*. (5)

SThe latter results in the KS equation, without coarsening.
Therefore, our dispersion relation in Eq®) and (3)
should be somehow close to E@4) and(5), when the con-

w=(R—Ryk®—k*, (6)

fwhich in turn results in the KS equatid@,14.

For the instability far from the onset(k) could be found
only numerically. Figure 1 shows the exact dispersion rela-
tion of downflowing liquid film for such a casgll] as a
dashed line; here, Reynolds numb+ 29, Weber number
. W=35, and angleg=6.4° (which are the experimental con-

—w e0NY(y,t)dy dk=0. 3) ditions in[5]).

o It is remarkable that Re(k) is very close to linear de-
pendencew(k)=k for small k as in Eq.(4) (say, fork
Now the problem of coarsening is reduced to the appropriate<0.08 on Fig. 1, though damping differs somewhat frdch
choice of w(k). We want to findw(k) such that(i) it is in Eq. (4). Note that linear dependence, Be-k, arises in
simple,(ii) includes some “control parameteg’, which will many hydrodynamical situations and typically leads to the
govern the magnitude of the coarsening, aiid) w(k) emergence of large structurg4].

ut+uux+f
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FIG. 3. Snapshotsi(x) in the developed regime for various ]
values ofe. FIG. 4. Averaged spectra of(x) vs wave numbek for various
values ofe.
To mimic the outlined kind of linear behavior, we propose
the following model dispersion relation: To check the above ideas, extensive numerical simula-
tions of Eq.(3) were undertaken. We used periodic boundary
0, k<e conditions and standard pseudospectral technique. The
W= bla—(k—a—s)?], k>e () Runge-Kutta fourth order scheme was used for the time ad-

vance with step 10°. The spatial discretization was such
with w(—k) = w(k). Hereba? defines the height of the para- that the typical wavelength =2/k. of the most unstable
bolic part ofw, a defines the width of the unstable parteof ~ Wave numbek. was covered by at least 20 points to ensure
ande defines the shift of parabolic part ef from the origin. ~ fair resolution of the computed solutions. Tests with smaller
Function(7) is continuous, but its first derivative is discon- time steps and better resolution gave indistinguishable re-
tinuous atk=¢. A Comparison of the proposed(k) with sults. Random small-amplitude fields were used as initial

exact dispersion relation for thin film is given in Fig. 1. conditions. The simulations were conducted on the long spa-
A comparison of Eq(7) with KS dispersion relatiof6) is  tial interval of 100..
shown in Fig. 2. Note that parametersindb may be scaled The results presented below use the following parameters:

out from Eq.(3) by a change of the coordinate and time 6=(0,2,4,6,8,10x 10", a=0.5, b=1. The typical snap-

scales, respectively; further, we take for simplicityzy ~ shots ofu(x,T) in the developed regime are shown in Fig. 3.

a=0.5.As a resultonly a single parameteg controls the = Here T=1000r., where 7.=1/w(k.) is the typical time-

spatiotemporal dynamics scale of growth of the disturbances. The corresponding spec-
The main idea of Eq97) and(3) is that the parameter  tra, averaged over long time 20QQ are shown in Fig. 4. As

is assumed to control the length-scale of the emerging pawas mentioned above, fer=0, Eq.(3) may be transformed

terns. Where =0 and thereforesn~|k| — k2, Eq. (3) may be

reduced to the integral Sivashinsky equati@8] by the 211n(uy)

substitutionu=v, and subsequent integration. Numerical

simulation of the integral Sivashinsky equation shows a full 1

coarsening 3]. For e compared witha, relation(7) is close wave number k
to the KS dispersion relation, Fig. 2. We assume therefore 200 200 600 800

that in this case the dynamics produced by E3).will be
close to that produced by the KS equatifptb] without
coarsening. As a result, we expect that variationes ofvill
mimic the transition from the full coarsening, to the degen-
eration of the coarsening.

The integral Sivashinsky equation admits exact solutions
[16] and allows analytical investigation of the stability
of these exact solutiord7]. Hopefully, Eq.(3) will allow-
analytical solutions as well, or at least investigation by per-
turbations methods near the pole solutions of the integral
Sivashinsky equation for smadl. FIG. 5. Decay of spectra for various valueseof
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to the integral Sivashinsky equation. Numerical simulation Further enlargement of leads to(i) a reversing of the
shows[3] that in the developed regime the solutions of therole of t_he shor_ter and longer harmoniCS; namely, the shorter
integral Sivashinsky equation develop a large cusp structurBarmonics begins to be the leading one, and longer harmon-
with small irregular cusps. The size of the large cusp is equdfS becomes to be a subharmofsee Figs. &)—4(f)]; (i) a

to the whole computational domain. This kind of behaviordegeneration of stretching; afid) an appearance of KS-like
may be clearly seen in Fig.(&, where the solution consti- patterngsee Figs. @) and 3f)]. . .
tutes one sharp front, with smaller peaks around. Respec- Parameteg also controls _the rate of _damplng of Fourier

. : X ' . o ' : %pectrum for computed solutions; see Fig. 5. For lasgéhe
tively, first Fourier harmonics of the solution is the leading

. : ; I short-wavelength modes are more damped.
one, Fig. 4a). Therefore, the full coarsening occurs in this We conclude that the dynamical response of [Eg).

case. passes all stages of dynamical coarsening through variations
For £=0.02, the solution exhibits the typical intermittent of ¢. This mimics the emergence and strengthening of the

structures, with the characteristic length substantially largecoarsening in real hydrodynamical flows when the control

than\, andindependenbf the length of computational do- parameter becomes large enough.

main (this was additionally checked on longer domains, and The addition of KdV-like dispersion to Eqs7) and (3)

is not shown hene The corresponding spectrum has the entails regulanza‘uon qf the intermittent patterns in F|.g. 3

maximum on the fifth Fourier component. Hence, comparetﬁn,Ot sh'own herg A similar ordgrmg influence of dispersion

to the pure linear dynamics, theveragedstretching in this arises in the Kawahara equatipis]. _

case is 100/5 20 times. Fore=0 the coarsening expands As a result, EQ(S)_ allows one to model the comphcateq

over the whole computational domain. In contrast to that, folPrOCess of coarsening appearing in marny pattern-forming

£=0.02 nonlineasaturationof the coarsening occurs. Note systems fqr from the onset of the instability, where conven-

the diminishing of the amplitude of the leading FouriertIonal muIUscaIg expansions are not very useful. We think

mode, and distinctive appearance of the second harmoni(%Eat mOdng) with dispersion r?'a“o'm will have applica-

compared with the case=0. For ¢=0.04, the typical lons in a broad range of physical systems.

length-scale of the computed solutions shrinks compared the The project was supported by the Applied Mathematical

casee=0.02, Figs. 8) and 3c). Corresponding leading Sciences subprogram of the Office of Energy Research, U.S.

Fourier harmonics is now 18th; the averaged stretching i®epartment of Energy, under Contract No. DE-ACO03-76-

about 100/18-5 times. Note that the second harmonics isSF00098, during the author's work in Lawrence Berkeley

relatively more prominent than far=0.02. National Laboratory.
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