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In the strongly nonlinear regime many pattern-forming systems, such as premixed flames, film flows, and
three-dimensional hydrodynamical flows, exhibit a remarkable nonlinear phenomenon: the resulting patterns
are substantially longer than the wavelength of the linearly most unstable mode. Usually such an inverse
cascade, or coarsening is attributed to high-order nonlinear effects. We show, however, that the coarsening may
be well described by a proposed weakly nonlinear evolution equation. The key of the model is the dispersion
relation, which, being the kernel of Fourier convolution operator, captures the essential properties of strong
instabilities in nonlinear systems.
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One of the most basic and interesting problems of pat
selection theory is to predict the length-scale of experim
tally observed structures. Typically, the stability propert
of the underlying physical system depend on a control
rameterR; e.g., it might be the Reynolds or Rayleigh numb
in hydrodynamics. Let us say that atR5Rc the system be-
comes unstable. When the system is only slightly unsta
0,R2Rc!1, the length-scale of the formed patterns
close to the length of the most unstable~in linear description!
mode. Such pattern dynamics is well described by one of
suitable well-known model equations@1,2#; for instance,
Kuramoto-Sivashinsky~KS!, Kawahara, and dissipation
modified KdV equations describe patterns induced by
long-wavelength instabilities. In the case of sho
wavelength instabilities, the Ginzburg-Landau equation of
appears.

When the instability becomes strong,R2Rc.O(1) or
R2Rc@1, the physical systems often exhibit a substan
stretching of the patterns compared with the length of
most unstable mode. In some contexts, such stretchin
known as coarsening, or inverse energy cascade. The w
known examples of the coarsening are the~i! appearance o
large cusplike waves in combustion@3#, ~ii ! alpha-effect in
three-dimensional hydrodynamics@4#, and~iii ! formation of
long solitary waves in thin liquid films@5,6#.
PRE 621063-651X/2000/62~4!/4489~4!/$15.00
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Traditionally, the phenomenon of coarsening is attribu
to the impact of higher-order nonlinear effects. In conve
tional techniques of multiscale, or long-waveleng
asymptotic expansions, the higher-order terms become
portant for instabilities far from the onset. However, the a
count of the higher-order nonlinearities usually allows one
extend the applicability of the conventional evolution equ
tions only forR slightly exceedingRc , and in most of cases
is not applicable for the strong instabilities.

We propose an alternative explanation of the coarsen
in nonlinear systems. The idea of proposed description c
sists of the following.

We want to extract common simple properties shared
various physical systems with coarsening for strong instab
ties, with the hope that these properties will be respons
for the coarsening. With necessity, such approach should
ad hoc, since the conventional long-wavelength expansio
do not work well for strong instabilities. Fortunately, caref
investigation of a few nonlinear systems shows the direct
of the search.

We start from the linear stability problem, where the va
ableu is represented as

u;eikx1vt, ~1!
R4489 ©2000 The American Physical Society
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with real wave numberk and complex frequencyv. This
form provides the first insight into the underlying dynamic
Dispersion relationv(k) governs the dynamics of linea
waves@7#,

ut1E
2`

`

2v eik(x2y) u~y,t !dy dk50. ~2!

For weak instabilities,v(k) may be typically well approxi-
mated by the power series ink. Technically, this may be
done by multiscale asymptotic expansions@8#, or by long-
wavelength expansions@9#. Replacingv by its approxima-
tion in terms of power series ofk allows one to reduce the
Fourier integral in Eq.~2! to a comfortable differential op
erator.

It is a very common and distinguishable property of t
linear stability problem, that the dispersion relationv(k) for
strong instabilities dramatically differs from that for wea
instabilities. The manifestation of the difference is that rad
of convergence of power series expansion ofv(k) is typi-
cally small for instabilities far from the onset. As a resu
v(k) for strong instabilitiescannotbe well approximated by
appropriate expansions in power series ofk.

Therefore, the description of the linear stage of the r
evant dynamics for strong instabilities should include the
Fourier integral~2!, which is the basic classical idea for th
description of nonlinear processes@7#.

As for nonlinearity, we take the simplest kinematic ter
uux . This term appears in Burgers, KdV, KS, Kawaha
equations, the description of weak turbulence@10#, and other
models@7#. In combustion@3,8# and thin films@2,11#, this
nonlinearity is sufficient to reproduce the main features
the pertinent dynamics.

Combining Eq.~2! with kinematic nonlinearityuux , we
propose the following model equation:

ut1uux1E
2`

`

2v eik(x2y)u~y,t !dy dk50. ~3!

Now the problem of coarsening is reduced to the appropr
choice of v(k). We want to findv(k) such that~i! it is
simple,~ii ! includes some ‘‘control parameter’’«, which will
govern the magnitude of the coarsening, and~iii ! v(k)

FIG. 1. Plot of Eq.~7! for a50.128,b50.85,«50.022 ~solid
line!; exact dispersion relation for the downflowing film for cond
tions of @5# ~dashed line!.
.

s

l-
ll

f

te

should reasonably approximate the dispersion relations in
known equations with coarsening.

We will use equations for dynamics of premixed flame
and thin film to illustrate the choice ofv(k). The implicit
formula definingv(k) for the premixed flames is given in
@8# @expression~17! on p. 1184#. We need only the under
standing of its asymptotic behavior.

When the Lewis number is equal to unity and therm
expansion of combustion products is strong, the main term
the expressionv(k) reads@8#

v~k!.uku2k2. ~4!

Dispersion relation~4! leads to the integral Sivashinsk
equation with the full coarsening@3#.

From the other side, below the critical Lewis number, t
leading term ofv(k) for small thermal expansion is@8#

v~k!.k22k4. ~5!

The latter results in the KS equation, without coarsening
Therefore, our dispersion relation in Eqs.~2! and ~3!

should be somehow close to Eqs.~4! and~5!, when the con-
trol parameter« changes.

It is remarkable that the thin film flows provide very sim
lar criteria for the choice ofv(k).

When the Reynolds numberR of the liquid film is slightly
above the critical Reynolds numberRc , the dispersion rela-
tion has the following form@12,13#:

v.~R2Rc!k
22k4, ~6!

which in turn results in the KS equation@2,14#.
For the instability far from the onset,v(k) could be found

only numerically. Figure 1 shows the exact dispersion re
tion of downflowing liquid film for such a case@11# as a
dashed line; here, Reynolds numberR529, Weber number
W535, and angleu56.4° ~which are the experimental con
ditions in @5#!.

It is remarkable that Rev(k) is very close to linear de-
pendencev(k).k for small k as in Eq. ~4! ~say, for k
,0.08 on Fig. 1!, though damping differs somewhat fromk2

in Eq. ~4!. Note that linear dependence, Rev;k, arises in
many hydrodynamical situations and typically leads to
emergence of large structures@3,4#.

FIG. 2. Comparison of typical dispersion relation~6! for the KS
equation~dashed line! with Eq. ~7! for «50.15 ~solid line!.
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To mimic the outlined kind of linear behavior, we propo
the following model dispersion relation:

v5H 0, k,«

b@a22~k2a2«!2#, k.«,
~7!

with v(2k)5v(k). Hereba2 defines the height of the para
bolic part ofv, a defines the width of the unstable part ofv,
and« defines the shift of parabolic part ofv from the origin.
Function~7! is continuous, but its first derivative is discon
tinuous atk5«. A comparison of the proposedv(k) with
exact dispersion relation for thin film is given in Fig. 1.

A comparison of Eq.~7! with KS dispersion relation~6! is
shown in Fig. 2. Note that parametersa andb may be scaled
out from Eq. ~3! by a change of the coordinate and tim
scales, respectively; further, we take for simplicity b51,
a50.5. As a result, only a single parameter« controls the
spatiotemporal dynamics.

The main idea of Eqs.~7! and~3! is that the parameter«
is assumed to control the length-scale of the emerging
terns. When«50 and thereforev;uku2k2, Eq. ~3! may be
reduced to the integral Sivashinsky equation@2,8# by the
substitution u5vx and subsequent integration. Numeric
simulation of the integral Sivashinsky equation shows a
coarsening@3#. For « compared witha, relation~7! is close
to the KS dispersion relation, Fig. 2. We assume theref
that in this case the dynamics produced by Eq.~3! will be
close to that produced by the KS equation@15# without
coarsening. As a result, we expect that variation of« will
mimic the transition from the full coarsening, to the dege
eration of the coarsening.

The integral Sivashinsky equation admits exact soluti
@16# and allows analytical investigation of the stabili
of these exact solutions@17#. Hopefully, Eq.~3! will allow-
analytical solutions as well, or at least investigation by p
turbations methods near the pole solutions of the inte
Sivashinsky equation for small«.

FIG. 3. Snapshotsu(x) in the developed regime for variou
values of«.
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To check the above ideas, extensive numerical simu
tions of Eq.~3! were undertaken. We used periodic bounda
conditions and standard pseudospectral technique.
Runge-Kutta fourth order scheme was used for the time
vance with step 1022. The spatial discretization was suc
that the typical wavelengthl52p/kc of the most unstable
wave numberkc was covered by at least 20 points to ensu
fair resolution of the computed solutions. Tests with sma
time steps and better resolution gave indistinguishable
sults. Random small-amplitude fields were used as ini
conditions. The simulations were conducted on the long s
tial interval of 100l.

The results presented below use the following paramet
«5(0,2,4,6,8,10)31022, a50.5, b51. The typical snap-
shots ofu(x,T) in the developed regime are shown in Fig.
Here T51000tc , where tc51/v(kc) is the typical time-
scale of growth of the disturbances. The corresponding sp
tra, averaged over long time 2000tc , are shown in Fig. 4. As
was mentioned above, for«50, Eq.~3! may be transformed

FIG. 4. Averaged spectra ofu(x) vs wave numberk for various
values of«.

FIG. 5. Decay of spectra for various values of«.



io
he
tu
u
io
-
pe
ng
is

nt
ge
-
n

he
re

s
fo
e
er
n

t

is

rter
on-

er

ions
the
rol

3
n

d
ing

en-
ink

cal
.S.

6-
ey

RAPID COMMUNICATIONS

R4492 PRE 62IGOR L. KLIAKHANDLER
to the integral Sivashinsky equation. Numerical simulat
shows@3# that in the developed regime the solutions of t
integral Sivashinsky equation develop a large cusp struc
with small irregular cusps. The size of the large cusp is eq
to the whole computational domain. This kind of behav
may be clearly seen in Fig. 3~a!, where the solution consti
tutes one sharp front, with smaller peaks around. Res
tively, first Fourier harmonics of the solution is the leadi
one, Fig. 4~a!. Therefore, the full coarsening occurs in th
case.

For «50.02, the solution exhibits the typical intermitte
structures, with the characteristic length substantially lar
thanl, and independentof the length of computational do
main ~this was additionally checked on longer domains, a
is not shown here!. The corresponding spectrum has t
maximum on the fifth Fourier component. Hence, compa
to the pure linear dynamics, theaveragedstretching in this
case is 100/5520 times. For«50 the coarsening expand
over the whole computational domain. In contrast to that,
«50.02 nonlinearsaturationof the coarsening occurs. Not
the diminishing of the amplitude of the leading Fouri
mode, and distinctive appearance of the second harmo
compared with the case«50. For «50.04, the typical
length-scale of the computed solutions shrinks compared
case«50.02, Figs. 3~b! and 3~c!. Corresponding leading
Fourier harmonics is now 18th; the averaged stretching
about 100/18.5 times. Note that the second harmonics
relatively more prominent than for«50.02.
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Further enlargement of« leads to~i! a reversing of the
role of the shorter and longer harmonics; namely, the sho
harmonics begins to be the leading one, and longer harm
ics becomes to be a subharmonic@see Figs. 4~d!–4~f!#; ~ii ! a
degeneration of stretching; and~iii ! an appearance of KS-like
patterns@see Figs. 3~e! and 3~f!#.

Parameter« also controls the rate of damping of Fouri
spectrum for computed solutions; see Fig. 5. For larger«, the
short-wavelength modes are more damped.

We conclude that the dynamical response of Eq.~3!
passes all stages of dynamical coarsening through variat
of «. This mimics the emergence and strengthening of
coarsening in real hydrodynamical flows when the cont
parameter becomes large enough.

The addition of KdV-like dispersion to Eqs.~7! and ~3!
entails regularization of the intermittent patterns in Fig.
~not shown here!. A similar ordering influence of dispersio
arises in the Kawahara equation@18#.

As a result, Eq.~3! allows one to model the complicate
process of coarsening appearing in many pattern-form
systems far from the onset of the instability, where conv
tional multiscale expansions are not very useful. We th
that model~3! with dispersion relation~7! will have applica-
tions in a broad range of physical systems.
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